
Arithmetic Data Cube as a Data Intensive Benchmark

Michael A. Frumkin, Leonid Shabanov1

NASA Advanced Supercomputing (NAS) Division
NASA Ames Research Center, Moffett Field, CA 94035-1000

frumkin@nas.nasa.gov, leonid.shabanov@crossz.com

NAS-03-005

February 20 2003

1Employee of CrossZ Solutions USA.

2

Abstract

Data movement across computational grids and across memory hierarchy of individual grid machines is known to
be a limiting factor for application involving large data sets. In this paper we introduce the Data Cube Operator on
an Arithmetic Data Set which we call Arithmetic Data Cube (ADC). We propose to use the ADC to benchmark grid
capabilities to handle large distributed data sets. The ADC stresses all levels of grid memory by producing 2d views
of an Arithmetic Data Set of d-tuples described by a small number of integer parameters. We control data intensity of
the ADC by controlling the sizes of the views through choice of the tuple parameters.

1 Introduction

The main subject of data warehousing and On-Line Analytical Processing (OLAP), decision support database
systems, data mining systems and resource brokers is a data set represented as a list of tuples. The data set has a
number of dimension and measure attributes. Here we will consider data sets having d of dimension attributes and a
single measure attribute. A tuple t of such data set can be represented as t = (i1, . . . , id, c), where each dimension
attribute ij assumes values in some range, say in an interval [1, mj −1], and c is a cost function (a measure) associated
with t. The goal of OLAP is to assist users to discover patterns and anomalies in the data set by providing short query
execution times [13].

A standard tool of OLAP is the Data Cube Operator (DCO) [3], which computes views of the data set. For a
chosen subset of k attributes, a view is a sorted set of k-tuples containing only the chosen attributes with accumulated
measures of the duplicates. If technically possible, DCO computes 2d views on all possible subsets of the dimensions.
The calculated DC reduces queries of multidimensional data to simple look-ups. There are approaches [1, 5] for mining
multi-dimensional association rules and answering iceberg queries by computing an iceberg cube, which contains only
aggregates above a certain threshold.

The input data sets and some of the materialized views often do not fit in-core, thus DCO computation requires a
careful reuse of data loaded into the main memory (and all levels of cache). As a rule, computation of the DCO spills
data across all levels of memory, making DCO especially interesting as a data intensive benchmark. Also, DCO output
size usually is significantly larger than the size of the input data set.

A large number of papers is devoted to efficient computation of the DCO [6, 12, 18] and many companies have
proprietary algorithms for DCO computations. Some authors propose parallel DCO computation algorithms [8, 10].
To improve the efficiency of querying data cubes a number of publications consider calculation and storage of data
cubes as condensed cubes [17] or as other highly compressed structures [14].

We are not trying to evaluate DCO algorithms here, instead we are designing a benchmark for computational grids.
For the reference implementation1 we choose a greedy algorithm [6] that computes each view from the smallest parent
(a view having one more attribute). We assume that all attribute values are integers. Although real OLAP data sets
and existing OLAP benchmarks [11, 16] use mostly strings as attribute values, this is not a significant limitation,
since strings can be enumerated by integers (using hashing, for example) if necessary. One of the advantages of using
integers as attribute values is reduction in the size of the input data sets and materialized views.

Many data sets are available to test OLAP systems, DCO algorithms and data mining algorithms, for example, the
ABP-1 and TPC-D benchmark databases [11, 16]. For benchmarking purposes the most appropriate is a synthetic data
set which can be generated by a small program, so that the data set will be scalable, the distribution of the benchmark
will be manageable, and replication of the data set on the computational grid will incur a small overhead. Also, a
synthetic data set, as in many real applications, can be generated in a distributed fashion, which saves the effort of
splitting and distributing the data set.

1To be described in our next report

3

In available synthetic data sets, the tuples are randomly generated, however there is no way to control the sizes of
the data views. In the next section we introduce the Arithmetic Data Set, which is similar to the randomly generated
data sets, but has the advantage of a priori known sizes of the views. The latter simplifies the implementation of the
greedy DCO algorithm. For real or random data, one can estimate the view sizes using sampling or some analytical
methods [6, 15].

2 The Arithmetic Data Set

The purpose of constructing an Arithmetic Data Set is to have a data set whose view sizes can be well controlled.
An Arithmetic Data Set S is a subset of a group Q defined by

Q =

d⊕

i=1

(Z/miZ)∗,

where (Z/miZ)∗ is the set of integers modulo mi coprime with mi. An element of S can be represented by a tuple
x = (x1, . . . , xd), where xi is an integer modulo mi. The subset S is defined by a seed s = (s1, . . . , sd) ∈ Q, a
generator g = (g1, . . . , gd) ∈ Q, si, gi 6= 0, i = 1, . . . , d and the total number of elements n:

S =

n−1⋃

j=0

(s1g
j
1
, . . . , sdg

j
d).

We choose 1 < gi < mi to be one of fi = |(Z/miZ)∗| numbers which are coprime with mi. Let qi be the order
of gi that is the smallest integer such that gqi

i ≡ 1 mod(mi). Since gj
i can assume at most fi different values then

gfi

i ≡ 1 mod(mi) and qi divides fi. The tuples (s1g
j
1
, . . . , sdg

j
d), j = 0, . . . , n − 1 are different elements of Q if

LCM(q1, . . . , qd) ≥ n, see Corollary 2. (Here LCM stands for the Least Common Multiple.)
Data Views. For any subset containing k of the cube dimensions I = {i1, . . . , ik} ⊂ {1, . . . , d} the I-view of

x ∈ Q is defined as a projection of x on the face of the cube defined by I :

xI = (xi1 , . . . , xik
).

The I-view of S is comprised of the I-view of all elements of S:

SI = {xI |x ∈ S}.

View Sizes. For a given I-view we are interested to find out the number of tuples in SI . To do this we estimate the
multiplicity of a tuple x ∈ SI , defined as the number of tuples of S having the same I-view as x.

Two tuples sIg
j
I and sIg

k
I are the same iff gk

I = gj
I or gk−j

I = 1I considered as elements of QI . Hence, the
multiplicity µ of sIg

j
I can be calculated as follows:

µ = |{0 ≤ k < n | k − j ≡ 0 mod(qi), i ∈ I}|.

Since the smallest nonzero solution of the system of congruences k − j ≡ 0 mod(qi), i ∈ I , is λI = LCMi∈I (qi) we
find that b n

λI

c ≤ µ ≤ b n
λI

c + 1, which proves the following assertion.

PROPOSITION 1. Let λI = LCMi∈I(qi). The multiplicity µ of any tuple of an I-view of S can be estimated as

b
n

λI

c ≤ µ ≤ b
n

λI

c + 1.

4

If λI > n, then the second inequality of the proposition implies that multiplicity of each element of SI is 1, hence
|SI | = n. Obviously, |SI | ≤ λI . Hence, we have the following formula for |SI |:

COROLLARY 2. For the size of an I-view of S we have the following relation:

|SI | = min(n, λI).

3 Choice of the Parameters

To illustrate a possible choice of the parameters for the grid benchmarks we choose mi to be prime numbers and
gi to be generators of (Z/miZ)∗, hence having period qi = fi = mi − 1. Also, we choose mi such that mi − 1 has
many small prime factors so that λI has a good chance of been small. This approach gives us good control over the
sizes of the data set and its views. Our actual choice of the mi is shown in the Table 1.

We choose 4 groups of the smallest prime numbers {3, 5, 7}, {11, 13, 17, 19}, {23, 29, 31, 37}, and {41, 43, 47, 53,
59}. For each group we choose 5 smallest primes mi such that prime factors of mi − 1 are 2 and numbers from this
group2. This set of parameters gives us a data set of 25 ·32 ·52 ·72 ·11 ·13 ·17 ·192 ·23 ·29 ·312 ·37 ·41 ·43 ·47 ·53 ·59
different tuples and, for example we can choose n = 2 · 11 · 23 · 41 · 3 · 13 · 29 · 43 · 5 · 17 = 85759918530. At the
same time the sizes of 5-dimensional views (relative to each of the groups) are small relative to the number of the total
elements in the data set.

4 DCO Application in Air Traffic Control

The Air Traffic Control (ATC) system works with records of flight data represented as a set of tuples [9]. We use
ATC to illustrate a possible application of DCO to speedup access to the data.

Each of about 20 national ATC Centers obtain flight data from airports and radars in real time. Typical records are
shown in Table 2 and a typical query is as follows:

Find AC type
where Busy = 1
and ETA is Between 1105 and 1110
and destination is CLE

These queries can be posted at any of the centers and should be executed in real time. It implies that:

• the flight data must be communicated between the centers in real time;

• at each center the data should be stored in the form that allow real time queries;

One possible way to satisfy the second requirement is to keep at each center complete data cube in core memory.
This example addresses only queries of ATC data. It shows that DCO can be used to process data sets distributed

across nodes of a gird. A possibility of real time update of ATC data and of the Data Cube should be farther investi-
gated.

2Since we use odd primes, mi − 1 always has 2 as a factor

5

Table 1. Dimensions of the Arithmetic Data Cube and their factorizations. Here “Least Generator” γi is
the smallest generator of (Z/miZ)∗, the “Generator” is the chosen generator of (Z/miZ)∗ and the “Exp”
is ei such that gi = γei

i .

Prime Factorization of m − 1 Least Generator Exp Generator Seed (m + 1)/2
1. 421 22 · 3 · 5 · 7 2 11 364 211
2. 601 23 · 3 · 52 7 13 412 301
3. 631 2 · 32 · 5 · 7 3 17 334 316
4. 701 22 · 52 · 7 2 19 641 351
5. 883 2 · 32 · 72 2 23 108 442

LCM 23 · 32 · 52 · 72 = 88200

6. 419 2 · 11 · 19 2 23 228 210
7. 443 2 · 13 · 17 2 29 98 222
8. 647 2 · 17 · 19 5 31 94 324
9. 21737 23 · 11 · 13 · 19 31 37 8280 10869

10. 31769 23 · 11 · 192 7 41 26667 15885
LCM 23 · 11 · 13 · 17 · 192 = 7020728

11. 1427 2 · 23 · 312 2 41 595 714
12. 18353 24 · 31 · 37 3 43 8397 9177
13. 22817 25 · 23 · 31 3 47 15046 11409
14. 34337 25 · 29 · 37 3 53 15699 17169
15. 98717 22 · 23 · 29 · 37 2 59 62206 49359
LCM 25 · 23 · 29 · 312 · 37 = 758228608

16. 3527 2 · 41 · 43 5 3 125 1764
17. 8693 22 · 41 · 53 3 5 443 4347
18. 9677 22 · 41 · 59 2 7 128 4839
19. 11093 22 · 47 · 59 2 11 2048 5547
20. 18233 23 · 43 · 53 3 13 8052 9117
LCM 23 · 41 · 43 · 47 · 53 · 59 = 2072850776

5 Related Work

The benchmarking of data mining systems is well established area of High Performance Computing [11, 16].
These benchmarks are designed to compare performance of query systems running on a server. On the other hand,
a number of benchmarks have been designed for testing computational grids [2]. The grid benchmarking effort is
currently supported by the Grid Benchmarking Research Group at the Global Grid Forum. These benchmarks are
mostly computationally intensive and are derived from NAS Parallel Benchmarks. We propose the Arithmetic Data
Cube (ADC) as a data intensive grid benchmark which extends typical data mining operations into a grid environment.

6 Conclusions

We show that ADC represents an important set of computations in the OLAP and data mining. We give an example
of a dynamic real time system performing the set of operations specified in ADC.

6

Table 2. Air Traffic Control Data. Typical Query: Find AC type where Busy = 1 and ETA is
Between 1105 and 1110 and destination is CLE.

Flight ID AC type ETA Destination Controller Busy

UAL 147 747 1100 CLE 17 1
NW 1186 767 1132 ORD 26 1
KLM 761 747 1105 CLE 8 1
AA 2345 A320 1135 ORD 17 1
UAL 258 737 1112 CLE 9 1
AA 2744 737 1105 CAK 11 1
SW 377 767 1108 CLE 87 1

The ADC is data intensive since

• it mostly involves logical operations

• the size of the output data set significantly exceeds the size of the original data set

• existing algorithms perform few operations per memory access (and are similar to the merge in this respect)

The advantages of ADC as a grid benchmark are that

• it is described by a small number of parameters and has a priori known sizes of the views

• the views can be generated independently

• the overhead of combining the generated views is predictable

• the data set can be partitioned into a number of independently generated subsets

• the elements of the data set are pseudo random

These two properties make ADC a strong candidate for a data intensive grid benchmark to be considered by the
Global Grid Forum Grid Benchmarking Research Group (GB-RG) [4].

Bibliography

[1] K. S. Beyer and R. Ramakrishnan. Bottom-up computation of sparse and iceberg cubes. SIGMOD 1999, 359-
370.

[2] M. Frumkin, Rob F. Van der Wijngaart. NAS Grid Benchmarks: A Tool for Grid Space Exploration. Cluster
Computing, Vol. 5, pp. 247-255, 2002.

[3] J. Gray, A. Bosworth, A. Layman, and H. Prahesh. Data Cube: A Relational Aggregation Operator Generalizing
Group-By, Cross-Tab, and Sub-Total. Microsoft Technical Report, MSR-TR-95-22, 1995.

[4] Grid Benchmarking Research Group. http://www.ggf.org/L WG/wg.htm.

[5] J. Han, J. Pei, G. Dong, K. Wang. Efficient Computation of Iceberg Cubes with Complex Measures. SIGMOD’01,
Santa Barbara, CA, May 2001, 1-12.

[6] V. Harinarayan, A. Rajaraman, and J. D. Ullman. Implementing Data Cubes Efficiently. In Proc. of ACM SIG-
MOD, pp. 205-216, Montreal, Canada, June 1996.

[7] IBM Quest Synthetic Data Generation Code. http://www.almaden.ibm.com/cs/quest/syndata.html.

[8] W. Liang, M. E. Orlowska. Computing Multidimensional Aggregates in Parallel. International Conference on
Parallel and Distributed Systems, Taiwan, 1998, 92-99.

[9] W. Meilander, M. Jin, J. Baker. Tractable Real-Time Air Traffic Control Automation. Proceedings of the 14th
IASTED International Conference Parallel and Distributed Computing and Systems, Cambridge, USA, 2002,
pp. 483-488.

[10] S. Muto, M. Kitsuregawa. A Dynamic Load Balancing Strategy for Parallel Datacube Computation. Proceedings
of the second ACM international workshop on Data warehousing and OLAP, 1999, 67-72.

[11] OLAP Council / ABP-1 OLAP Benchmark, Release II, http://www.olapcouncil.org.

[12] S. Sarawagi, R. Agrawal, and A. Gupta. On computing the data cube. Technical Report RJ10026, IBM Almaden
Research Center, San Jose, CA, 1996.

[13] S. Sarawagi, R. Agrawal, and N. Megiddo. Discovery-driven Exploration of OLAP Data Cubes. In Proc. Inter-
national Conf. of Extending Database Technology (EDBT’98), March 1998, 168-182.

[14] Y. Sismanis, A. Deligiannakis, N. Roussopoulos, and Y. Kotidis. Dwarf: Shrinking the PetaCube. ACM SIG-
MOD international conference on Management of data. Madison, Wisconsin, USA. 2002.

7

8

[15] A. Shukla, P. Deshpande, J.F. Naughton, and K. Ramasamy. Storage Estimation for Multidimensional Aggregates
in the Presence of Hierarchies VLDB 1996, 522-531.

[16] TPC BENCHMARKTM D (Decision Support) Standard Specification, Revision 1.3.1, http://www.tpc.org.

[17] W. Wang, J. Feng, H. Lu, and J. Xu Yu. Condensed Cube: An Efficient Approach to Reducing Data Cube Size.
Proceedings of the 18th International Conference on Data Engineering, 2002, 155-165.

[18] Y. Zhao, P. M. Deshpande, and J.F. Naughton. An Array-Based Algorithm for Simultaneous Multidimensional
Aggregates. Proc. of the 1997 ACM-SIGMOD Conf., 1997, 159-170.

